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Abstract

Recently, there have been advances on characterizing an interaction in a two-way

ANOVA design in a manner that takes into account simultaneously some robust mea-

sure of location and some robust measure of dispersion. These methods allow het-

eroscedasticity. The first goal in this paper is to suggest an analog of one of these

measures of effect size when there is a covariate. Extant results related to the pro-

posed method suggest how to make inferences about the proposed measure of effect

size, but even for moderately small sample size, they proved to be unsatisfactory. The

second goal here is to suggest a method for dealing with this issue.
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1 Introduction

There are two main goals in this paper. The first is to suggest a robust method for charac-

terizing an interaction in a two-way ANOVA design, when there is a covariate, in a manner

that takes into account both a measure of location and a measure of dispersion. This is done

based on a simple analog of a measure effect size derived by Kulinskaya et al. (2008). The

basic idea is to provide an alternative to simply comparing measures of location that helps

provide a deeper and more nuanced understanding of how the groups differ. As stressed and

illustrated by Steegan et al. (2014), multiple perspectives can be essential when analyzing

data. The method used here has certain similarities to the method in Wilcox (2022b) when

there is no covariate. But the method here differs in fundamental ways as will be explained.

The second general goal is to suggest a method for making inferences about the proposed

measure of effect size. For reasons reviewed below, an obvious speculation is that a percentile

bootstrap method, or bootstrap estimate of the standard error, would perform well. But this

was not the case when dealing with moderately small sample sizes. A method for dealing

with this issue is proposed and studied via simulations.

To put the proposed method in perspective, and to help motivate the approach used,

first consider two independent groups having measures of location θ1 and θ2 and measures of

scale τ1 and τ2. Of course, typically groups are compared based on the measures of location

with the measures of scale viewed as nuisance parameters. A variety of robust methods are

described in WIlcox (2022a). But another approach is to focus on some measure of effect

size that takes into account both measures of location and scale. Generally these measures

of effect size take the form
θ1 − θ2
f(τ1, τ2)

, (1)

where f(τ1, τ2) is some function of the measures of dispersion to be determined. Seemingly

the best-known version of this approach is

∆ =
µ1 − µ2

σ
, (2)

where µj is the mean of the jth groups, σj is the standard deviation and by assumption

σ1 = σ2 = σ (e.g., Cohen, 1988). But there are two well-known concerns with this measure

of effect size. First, it is not robust, roughly meaning that a small change in the distributions
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can alter ∆ substantially. In particular, a small departure from normality can mask a

relatively large effect size among the bulk of the participants as illustrated by Algina et al.

(2005). A second concern is that ∆ assumes homoscedasticity.

Let Ȳj denote the sample mean for the jth group. Let N = n1 + n2, q = n1/N and note

that the squared standard error of Ȳ1 − Ȳ2 can be written as ς2/N , where

ς2 =
(1− q)σ2

1 + qσ2
2

q(1− q)
.

Kulinskaya et al. (2008) deal with heteroscedasticity by replacing ∆ with

ξ =
µ1 − µ2

ς
, (3)

which is called the KMS measure of effect size henceforth. But this method is not robust

simply because the mean and variance are not robust for general reasons summarized by

Hampel et al. (1986), Huber and Ronchetti (2009) as well as Staudte and Sheather (1990).

One way of dealing with this issue is to follow Algina et al. (2005) and replace the mean and

variance with a 20% trimmed and Winsorized variance. This is the approach used by Wilcox

(2022b) when dealing with an interaction. More precisely, consider a two-by-two ANOVA

design. For the first level of the first factor, let ξ1 denote ξ based on the two levels of the

second factor. Similarly, for the second level of the first factor, let ξ2 denote ξ based on the

two levels of the second factor. Wilcox (2022b) used to

δ = ξ1 − ξ2. (4)

to characterize an interaction.

Further details about the method used in Wilcox (2022b) are omitted because they do

not play a direct role here. To provide some indication why, let X denote some covariate.

Let δ(x) denote δ given that the covariate X = x. Estimating δ(x) requires information

about the conditional distribution of Y given that X = x. An approach to this problem is

suggested here that is based on robust measures of location and scale that differ from the

trimmed mean and Winsorized variance used by Wilcox (2022b). The reason for not using

the conditional trimmed mean and Winsorized variance is explained in section 2.

The paper is organized as follows. Section 2 describes an analog δ when there is a

covariate. This is followed by a description of a method for testing

H0 : δ(x) = 0, (5)
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no effect, given that X = x. The method yields a confidence interval as well. Section 3

reports simulation results on how well a modified bootstrap method performs when dealing

with relatively small sample sizes and non-normal distributions. Section 4 illustrates the

method using data dealing with the physical and emotional wellbeing of older adults.

For completeness, Tukey (1991) argued that testing for exactly equality, as is done in (5),

is nonsensical because surely δ(x) differs from zero at some decimal place. Jones and Tukey

(2000) suggest dealing with this issue via Tukey’s three decision rule. If (5) is rejected, make

a decision about whether δ(x) is greater than or less than zero. If (5) is not rejected, make

no decision. From this perspective, a p-value reflects the strength of the empirical evidence

can be made. But it does not indicate the probability of making a correct decision.

2 The Proposed Method

The proposed method assumes that for jth level of the first factor, and the kth level of the

second factor, the qth quantile of the dependent variable Yjk, given that covariate Xjk = x,

is

Yjkq = β0jkq + β1jkqx, (6)

where β0kjq and β1jkq are unknown parameters (j = 1, 2; k = 1, 2). The unknown slopes

and intercepts are estimated via the Koenker and Bassett (1978) estimator. Briefly, for any

group, let ri (i = 1, . . . , njk) denote the residuals. The slope and intercept are taken to be

the values that minimize ∑
ψq(ri), (7)

where

ψq(u) = u(q − Iu<0). (8)

Let b0kjq and b1jkq denote the estimates of β0kjq and β1jkq, respectively. For q = 0.5, let

θ̂jk(x) = b0kjq + b1jkqx (9)

denote the conditional median of Y given that X = x.
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To mimic the Kulinskaya. et al. measure of effect size, a conditional robust measure

of scale is needed. Here, an interquartile range is used that is rescaled to estimate the

conditional standard deviation when the conditional distribution of Y , given that X = x, is

normal. To elaborate, for q = 0.25 let

ûjk(x) = b0kjq + b1jkqx (10)

and for q = 0.75, let

v̂jk(x) = b0kjq + b1jkqx. (11)

The conditional measure dispersion used here is

ŵjk(X) =
v̂jk − ûjk

z0.75 − z0.25
, (12)

where z0.75 and z0.25 are the 0.75 and 0.25 quantiles of a standard normal distribution,

respectively.

Typically, linear regression models assume that the error term is homoscedastic. Assum-

ing homoscedasticity would make it possible to use a Winsorized variance as a conditional

measure of scale. Note that wjk(x) provides a convenient method for avoiding this restriction,

which is why it is used rather than a Winsorized variance.

Now consider two independent groups. For convenience, the two groups are taken to be

the two levels of the second factor corresponding to the first level of the first factor. The

immediate goal is to describe an analog of the KMS measure of effect size given by (3). The

measure of effect size is estimated to be

ξ̂1(x) =
θ̂11(x)− θ̂12(x)

ζ̂1(x)
, (13)

where

ζ̂1(x) =
(1− q1)ŵ

2
11(X) + q1ŵ

2
12(x)

q1(1− q1)
, (14)

where q1 = n11(n11 + n12). For the second level of the first factor, a measure of effect size is

computed in the same manner and is labeled ζ̂2(X). The measure of an interaction is taken

to be

δ̂(x) = ζ̂1(x)− ζ̂2(x). (15)
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Note that if the rows and columns of the design are interchanged, this will generally alter

the value of δ̂(x).

Now consider the goal of testing (5). Results on methods that have some similarity to

the situation at hand (Wilcox, 2022b, c) suggest using a percentile bootstrap method. Often

this approach performs well when dealing with robust estimators, but simulations indicated

that this is not the case here, even when dealing with moderately large sample sizes. The

actual level, when testing at the 0.05 level, was well below 0.05. Consequently, consideration

was given to using a bootstrap estimate of the standard error of δ̂(x), S, and assuming that

F =
δ̂(x)

S
. (16)

has a standard normal distribution.

Let (Yijk, Xijk) denote a random sample of size njk from levels j and k of the first and

second factor, respectively (j = 1, 2; k = 1, 2; i = 1, . . . , njk). The bootstrap estimate

of the standard error (e.g., Efron & Tibshirani, 1993) is computed as follows. First, gen-

erate a bootstrap sample from each group. That is, for each j and k randomly sample

with replacement nijk values from (Yijk, Xijk), i = 1, . . . , nJK . Based on these bootstrap

samples, compute the estimate of δ(x) yielding δ̂∗(x). Repeat this process B times yielding

δ̂∗1(x), . . . , δ̂
∗
B(x). The estimated squared standard error is

S2 =
1

B − 1

∑
(δ̂∗b (x)− δ̄∗(x))2, (17)

where δ̄∗(x) =
∑

δ̂∗b (x)/B. Results in Efron (1987) suggest that generally, B = 100 suffices.

This approach performed well in simulations when all sample sizes are at least one hun-

dred. But with relatively small sample sizes, the actual level was found to be less than 0.01

in some cases. Increasing B to 500 and even 1000 did not correct this problem. Some pre-

liminary simulations revealed why. Consider, for example, the case where for all four groups,

both X and Y have standard normal distributions. Further consider the case where the goal

is to make inferences about δ(0). That is, the value of the covariate that is of interest is

taken to be X = 0. For a common sample size of 40, a simulation was used to estimate δ(0)

3000 times and the standard deviation of the 3000 estimates yielded an estimate of S the

true standard error of δ̂(0), which was 0.206. For each replication the bootstrap estimate of

the standard error was computed as well. Both the mean and median of the 3000 estimates
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were equal to 0.227. That is, the bootstrap estimate of the standard was found to be biased,

it over estimates the true value, which explains why the assumption that F has a standard

normal distribution results in actual levels well below the nominal level.

The process just described was performed for the common sample sizes 20, 30, 40, 50,

75, 100 and 150, resulting in estimates of the true value of S and the expected value of the

bootstrap estimate of the standard error. For each sample size, the ratio of the estimate

of S and the mean estimate of the bootstrap estimate of the standard error was computed.

Next, a regression line was fitted to these seven ratios and the sample size with the goal

of determining a so that E(S/a) is approximately unbiased. The results indicated that

approximately, a = 4.4/n+1.00087, suggesting that S is asymptotically unbiased as expected.

With a common sample size greater than 150, a = 1 is used. For unequal sample sizes,

4.4/njk + 1.00087 is computed for each sample size and a is taken to be the average of the

values.

Based on these results an adjusted test statistic is used:

Fa = a
δ̂(x)

S
. (18)

A (1− α) confidence interval for δ(x) is taken to be

δ̂(x)± z1−α/2
S

a
. (19)

Of course, there is the issue of how well this approximate solution performs when dealing

with non-normal distributions as well as situations where X and Y are dependent. These

issues are addressed in section 3.

Note that δ̂(x) can be computed for a range of x values yielding a curve that provides

an additional perspective on the magnitude of the interaction as a function of the covariate.

This is illustrated in section 4.

Another issue is how to control the familywise error (FWE) rate, meaning the probability

of one or more Type I errors when testing (5) for multiple values for x. Here, results are

reported when an improvement on the Bonferroni method derived by Hochberg (1988) is

used. No advantage, in terms of Type errors, was found using instead the methods derived

by Holm (1979) and Hommel (1986), so these other approaches are not reviewed here.
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Hochberg’s method is applied as follows. Let α denote the desired FWE rate. Let C

denote the number of tests and let p[1] ≥ · · · ≥ p[C] denote the resulting p-values written in

descending order. Set k = 1. If p[k] ≤ α, reject all C hypotheses. If p[k] > α, proceed as

follows.

1. Increment k by 1. If

p[k] ≤
α

k
,

stop and reject all hypotheses having a p-value less than or equal p[k]

2. If p[k] >
α
k
, repeat step 1.

3. Repeat steps 1 and 2 until a hypothesis is rejected or all C hypotheses have been tested.

3 Simulation Results

Simulations were used to assess how well Fa performs in terms of a Type I error. The sample

sizes were taken to be (n11, n12, n21, n22) = (20, 20, 20, 20), (50, 50, 50, 50), (20, 20, 50, 50),

and (20, 20, 100, 100). Let Z denote a standard normal distribution. The distributions for

both X and Y were taken to be one of four g-and-h distributions given by




exp(gZ)−1
g

exp(hZ2/2), if g > 0

Zexp(hZ2/2), if g = 0
(20)

A standard normal distribution corresponds to g = h = 0. The parameter g determines

skewness and h determines how heavy-tailed the distribution happens to be. As h increases,

the distribution becomes more heavy-tailed. Here, the choices for g and h are (g, h) = (0, 0),

standard normal; (0.0, 0.2), symmetric and heavy-tailed; (1.0, 0.0), skewed and light-tailed

and (1.0, 0.2); skewed and heavy-tailed. Based on a summary of several studies aimed at

characterizing the extent distributions differ from normality (Wilcox, 2022a, section 4.2), the

distributions used here appear to span most distributions likely to be encountered in terms

of skewness and kurtosis. Figure 1 shows these four distributions. Pearson’s correlation

between Y and X was taken to be ρ = 0.0 and 0.5.
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Figure 1: Distributions used in the simulations
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Table 1: Estimated Type I errors, α = 0.05, x = 0, ρ = 0

n g h α̂

(20, 20, 20, 20) 0.0 0.0 0.043

0.0 0.2 0.045

1.0 0.0 0.044

1.0 0.2 0.042

(50, 50, 50, 50) 0 0 0.0 0.044

0.0 0.2 0.042

1.0 0.0 0.053

1.0 0.2 0.044

(20, 20, 50, 50) 0.0 0.0 0.038

0.0 0.2 0.040

1.0 0.0 0.032

1.0 0.2 0.031

(20, 20, 100, 100) 0.0 0.0 0.025

0.0 0.2 0.028

1.0 0.0 0.029

1.0 0.2 0.028

The first set of simulations used x = 0. The idea is that at a minimum, the method

should perform well when x is taken to be some value near the center of the distributions.

Table 1 shows the results for x = 0 and ρ = 0.0. The results for ρ = 0.5 were very similar

and are not reported for brevity. As can be seen, for equal sample sizes, the actual level is

estimated to be very close to nominal level. The highest estimate among all results is 0.053.

For unequal sample sizes, the actual level depends on how much the sample sizes differ as well

as how small the smallest values happen to be. Here, the lowest estimate was 0.025, which

occurred when (n11, n12, n21, n22) = (20, 20, 100, 100). Note that given the sample sizes, the

actual level does not depend very much on the nature of the distribution used to generate

the data.

Next, simulations were run for two situations based on five choices for x. The first

approach is based on choosing x in manner that avoids extrapolation. If, for example, x = 4
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Table 2: Estimated Type I error probability, α = 0.05 and x = −1.28

n g h FWE x = −1.28

20 0.0 0.0 0.015 0.010

0.0 0.2 0.020 0.019

1.0 0.0 0.028 0.041

1.0 0.2 0.031 0.037

50 0.0 0.0 0.030 0.037

0.0 0.2 0.033 0.043

1.0 0.0 0.028 0.035

1.0 0.2 0.033 0.026

is used, but for one of the groups there are no covariate values greater than 3, in effect

there are no data that provide information about the nature of the association when X > 3.

This concern is addressed by choosing three values for x as follows. Let Ujk = x̂jk,0.9 denote

an estimate of the 0.9 quantile associated with the jth level of the first factor and the kth

level of the second factor. And let Ljjk = x̂jk,0.1 denote the estimate of the 0.1 quantile.

Let L = max(L11, L12, L21, L22) and U = min(U11, U12, U21, U22). The simulations used five

values for x evenly space between L and U inclusive. The second approach used five choices

for x evenly space between the 0.1 and 0.9 quantiles of a standard normal distribution. That

is, the five values are between −1.28 and 1.28, inclusive. Results for the second situation,

where x = −1.28, are shown in Table 2. Results for the first situation were very similar to

the second situation, so they are not reported.

Bradley (1978) suggests that as a general guide, when testing at the 0.05 level, the actual

level should be between 0.025 and 0.075. As can be seen, when the groups have a common

sample size of 20, both the FWE rate and the probability of a Type I error when x = −1.28

do not satisfy Bradley’s criterion when dealing with a symmetric distribution, the estimates

are less than 0.025. For the skewed distributions, Bradley’s criterion is satisfied. For a

common sample size of 50, now Bradley’s criterion is met for all of the situations considered.

Some additional simulations were run where x = 2, the idea is to make it likely that

extrapolation occurs in one or more groups. This lowered somewhat the estimate of α.

11



130 Journal of Statistics and Computer Science

Table 3: Results for CESD = 15, 17, 19 and 21

CESD ˆδ(x) p.value ci.low ci.up

15 −0.242 0.083 −0.516 0.032

17 −0.267 0.061 −0.546 0.0124

19 −0.292 0.054 −0.589 0.005

21 −0.317 0.056 −0.643 0.007

4 An Illustration

The method is illustrated with data dealing with the physical and emotional wellbeing of

older adults. (The data are publicly available at https://osf.io/nvd59/quickfiles and stored

in the file A1B1C.) The first factor is education. Level one consists of participants who did

not complete high school and level two are those who did complete high school or higher. The

second factor is the cortisol awakening response, which refers to the change in a participant’s

cortisol level upon awakening and measured again 30-45 minutes later. The two levels here

are whether cortisol increases or decreases when measured the second time. This factor has

been found to be related to measures of stress (e.g., Wilcox, 2022a, section 11.1.13). The

dependent variable is a measure of meaningful activities and the covariate is a measure of

depressive symptoms (CESD).

Figure 2 shows the estimates of δ(x) for a range of CESD scores. The plot suggests

that as depressive symptoms increase, the interaction between education level and cortisol

becomes more pronounced. Table 3 reports the result when testing (5) for CESD equal to 15,

17, 19 and 21. The results suggest that for the more depressed individuals, there is a more

pronounced interaction, but arguably the strength of this result is not strongly compelling.

It is noted that if the covariate is ignored and a two-way ANOVA method based on the

medians is used, the p-value for no interaction is 0.226. This was done via the percentile

bootstrap method in Wilcox (2022a)
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Figure 2: Effect size as a function of depressive symptoms, CESD
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5 Concluding Remarks

In summary, when the covariate value is near the center of the distributions, all indications

are that non-normality has at most a minor impact on the ability of the method used here

to control the Type I error probability. The correlation between the dependent variable and

the covariate also appears to have little or no impact on the Type I error probability. If the

sample sizes are large, or small and approximately equal, the actual Type I error was found

to be close to the nominal level. If some sample sizes are very small and others quite large,

the actual level drops below the nominal but not by extreme amount.

When the covariate value is relatively far from the center of the distributions, the actual

level can drop well below the nominal level when all sample sizes are equal to twenty. For

sample sizes of at least fifty in all four groups, reasonably accurate control over the Type I

error probability was obtained in the simulations.

There are related issues that might be addressed in future investigations. For example,

computing an approximate (1−α) confidence band for the curve in Figure 2 would be useful.

Another issue is how the method used here might be generalized to do deal with a J-by-K

design whereK, say, is greater than two. Of course, all relevant interactions can be estimated

for any two levels of the first factor and any two levels of the second factor. But another

approach would be to use some measure effect that reflects the overall extent the levels of

second factor differ. That is, rather than use a measure effect size for each pair of groups,

use a global measure of effect size that characterizes the extent the groups differ.

Finally, the R function t2way.KMS.interbt applies the method used here and is stored

in the file Rallfun-v40, which can be downloaded from https://osf.io/xhe8u/. By default,

the values for the covariate are taken to be L, (L + U)/2 and U . The values used for the

covariate can be specified via the argument pts. The curve in Figure 2 was created with

the function t2way.KMS.curve, which is stored in the file Rallfun-v40 as well. Both of these

functions are being added to the R package WRS.
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